Các bài xích tập về nhị thức Newton là bài bác toán quan trọng trong đề thi trung học đa dạng Quốc Gia. Siêng đề này giúp học sinh nắm chắn chắn dạng bài bác tập về: tính tổng, rút gọn biểu thức, tìm thông số và số hạng trong triển khai lũy thừa trải qua các ví dụ.
Bạn đang xem: Bài tập nhị thức niu tơn
NHỊ THỨC NEWTON
I)KIẾN THỨC CẦN NHỚ:
1. Hoán vị:
(P_n = n.(n - 1).(n - 2)...3.2.1)
2. Chỉnh hợp:
(A_n^k = fracleft( n - k ight)!k! = n.(n - 1)...(n - k + 1))
3. Tổ hợp:
(C_n^k = fracn!k!(n - k)! = fracn.(n - 1)...(n - k + 1)k!)
*) Tính chất: (C_n^k = C_n^n - k)
(C_n^k + C_n^k + 1 = C_n + 1^k + 1)
4. Phương pháp Newton:
(left( a + b ight)^n = sumlimits_k = 0^n C_n^k a^n - kb^k = C_n^0a^n + C_n^1a^n - 1b + C_n^2a^n - 2b^2 + ... + C_n^nb^n)
(left( a - b ight)^n = left( - 1 ight)^nsumlimits_k = 0^n C_n^k a^n - kb^k = C_n^0a^n - C_n^1a^n - 1b + C_n^2a^n - 2b^2 - ... + left( - 1 ight)^nC_n^nb^n)
II) CÁC DẠNG BÀI TẬP:
Dạng 1: Phương trình, bất phương trình chỉnh đúng theo tổ hợp.



Dạng 2: Rút gọn đẳng thức, chứng tỏ biểu thức.
Xem thêm: Sediment Là Gì - Sedimentation Nghĩa Là Gì Trong Tiếng Việt



Dạng 3: xác định hệ số, số hạng trong khai triển lũy thừa.




III)BÀI TẬP RÈN LUYỆN:




Tải về
Luyện bài bác tập trắc nghiệm môn Toán lớp 11 - xem ngay