Lớp 1

Lớp 2

Lớp 2 - liên kết tri thức

Lớp 2 - Chân trời sáng tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Sách giáo khoa

Tài liệu tham khảo

Sách VNEN

Lớp 4

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Lớp 6

Lớp 6 - kết nối tri thức

Lớp 6 - Chân trời sáng tạo

Lớp 6 - Cánh diều

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 7

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 10

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề & Trắc nghiệm

IT

Ngữ pháp tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Chuyên đề Toán 9Chuyên đề: Hệ nhì phương trình số 1 hai ẩnChuyên đề: Phương trình bậc nhì một ẩn sốChuyên đề: Hệ thức lượng vào tam giác vuôngChuyên đề: Đường trònChuyên đề: Góc với con đường trònChuyên đề: hình tròn trụ - Hình Nón - Hình Cầu
Tìm điều kiện xác định của biểu thức chứa căn thức cực hay
Trang trước
Trang sau

Tìm điều kiện xác minh của biểu thức đựng căn thức cực hay

Phương pháp giải

+ Hàm số √A xác định ⇔ A ≥ 0.

+ Hàm phân thức xác định ⇔ mẫu thức không giống 0.

Ví dụ minh họa

Ví dụ 1: Tìm đk của x để những biểu thức sau bao gồm nghĩa:

*

Hướng dẫn giải:

a)

*
xác minh ⇔ -7x ≥ 0 ⇔ x ≤ 0.

Bạn đang xem: Cách tìm điều kiện xác định

b)

*
xác định ⇔ 2x + 6 ≥ 0 ⇔ 2x ≥ -6 ⇔ x ≥ -3.

*

Ví dụ 2: tra cứu điều kiện xác định của các biểu thức sau:

*

Hướng dẫn giải:

a)

*
xác định

⇔ (x + 2)(x – 3) ≥ 0

*

Vậy điều kiện xác minh của biểu thức là x ≥ 3 hoặc x ≤ -2.

b)

*
xác định

*

⇔ x4 – 16 ≥ 0

⇔ (x2 – 4)(x2 + 4) ≥ 0

⇔ (x – 2)(x + 2)(x2 + 4) ≥ 0

⇔ (x – 2)(x + 2) ≥ 0 (vì x2 + 4 > 0).

*

Vậy điều kiện xác định của biểu thức là x ≥ 2 hoăc x ≤ -2 .

c)

*
xác định

⇔ x + 5 ≠ 0

⇔ x ≠ -5.

Vậy điều kiện khẳng định của biểu thức là x ≠ 5.

Ví dụ 3: tìm kiếm điều kiện khẳng định của biểu thức

*

Hướng dẫn giải:

Biểu thức M xác minh khi

*

Từ (*) với (**) suy ra ko tồn tại x thỏa mãn.

Vậy không tồn tại giá trị làm sao của x tạo cho hàm số xác định.

Ví dụ 4: kiếm tìm điều kiện xác minh của biểu thức:

*

Hướng dẫn giải:

Biểu thức P xác định

*

Giải (*) : (3 – a)(a + 1) ≥ 0

*

⇔ -1 ≤ a ≤ 3

Kết hợp với điều khiếu nại a ≥ 0 cùng a 4 ta suy ra 0 ≤ a ≤ 3.

Vậy với 0 ≤ a ≤ 3 thì biểu thức P xác định

Bài tập trắc nghiệm từ bỏ luyện

Bài 1: Biểu thức

*
khẳng định khi :

A. X ≤ 1 B. X ≥ 1. C. X > 1D. X Hiển thị đáp án

Đáp án: B

Giải thích:

√(x-1) xác định ⇔ x – 1 ≥ 0 ⇔ x ≥ 1.


Bài 2:

*
xác minh khi:

A. X ≥ 1B. X ≤ 1C. X = 1 D. X ∈ ∅.

Hiển thị đáp án

Đáp án: C

*

*
xác định

⇔ -(x-1)2 ≥ 0 ⇔ (x-1)2 ≤ 0 ⇔ (x-1)2 = 0 ⇔ x =1.


Bài 3:

*
xác định khi :

A. X ≥ 3 cùng x ≠ -1B. X ≤ 0 và x ≠ 1

C. X ≥ 0 cùng x ≠ 1D. X ≤ 0 và x ≠ -1

Hiển thị đáp án

Đáp án: D

*
khẳng định

Bài 4: với cái giá trị làm sao của x thì biểu thức

*
xác định

A. X ≠ 2.B. X 2D. X ≥ 2.

Hiển thị đáp án

Đáp án: C

*
xác định

Bài 5: Biểu thức

*
xác định khi:

A. X ≥ -4. B. X ≥ 0 và x ≠ 4.

C. X ≥ 0D. X = 4.

Hiển thị đáp án

Đáp án: B

*
khẳng định

Bài 6: với mức giá trị như thế nào của x thì những biểu thức sau bao gồm nghĩa?

*

Hướng dẫn giải:

a)

*
khẳng định xác định ⇔ -x ≥ 0 ⇔ x ≤ 0

b)

*
khẳng định xác định ⇔ 2x + 3 ≥ 0 ⇔ 2x ≥ -3 ⇔ x ≥ -3/2

c)

*
xác định xác định ⇔ 5 – 2x ≥ 0 ⇔ 2x ≤ 5 ⇔ x ≤ 5/2 .

d)

*
khẳng định xác định ⇔ x – 1 ≠ 0 ⇔ x ≠ 1.

Bài 7: tìm điều kiện xác định của các biểu thức sau:

*

Hướng dẫn giải:

a)

*
xác định ⇔ (2x + 1)(x – 2) ≥ 0

*

Vậy biểu thức khẳng định với rất nhiều giá trị x ≥ 2 hoặc x ≤ -1/2 .

b)

*
khẳng định ⇔ (x + 3)(3 – x) ≥ 0

*

Vậy biểu thức khẳng định với phần nhiều giá trị x thỏa mãn

c)

*
xác định ⇔ |x + 2| ≥ 0 (thỏa mãn với mọi x)

Vậy biểu thức xác minh với những giá trị của x.

d)

*
xác minh ⇔ (x – 1)(x – 2)(x – 3) ≥ 0.

Ta bao gồm bảng xét dấu:

*

Từ bảng xét dấu nhận thấy (x – 1)(x – 2)(x – 3) ≥ 0 nếu như 1 ≤ x ≤ 2 hoặc x ≥ 3.

Bài 8: khi nào các biểu thức sau tồn tại?

*

Hướng dẫn giải:

a)

*
xác định ⇔ (a – 2)2 ≥ 0 (đúng với đa số a)

Vậy biểu thức khẳng định với phần nhiều giá trị của a.

b)

*
khẳng định với gần như a.

Vậy biểu thức khẳng định với các giá trị của a.

c)

*
xác minh ⇔ (a – 3)(a + 3) ≥ 0

*

Vậy biểu thức xác minh với những giá trị a ≥ 3 hoặc a ≤ -3.

Xem thêm: Lập Dàn Ý Cho Bài Văn Miêu Tả Một Đêm Trăng Nơi Em Ở, Lập Dàn Ý Bài Văn Miêu Tả Một Đêm Trăng Đẹp Lớp 5

d)Ta có: a2 + 4 > 0 với mọi a đề nghị biểu thức

*
luôn xác minh với hầu như a.

Bài 9: từng biểu thức sau xác minh khi nào?

*

Hướng dẫn giải:

a)

*
xác định

*
⇔ x – 2 > 0 ⇔ x > 2.

b)

*
xác định

⇔ x2 – 3x + 2 > 0

⇔ (x – 2)(x – 1) > 0

*

Vậy biểu thức xác định khi x > 2 hoặc x

Mục lục những Chuyên đề Toán lớp 9:

Chuyên đề Đại Số 9Chuyên đề Hình học 9

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, magmareport.net HỖ TRỢ DỊCH COVID

Phụ huynh đk mua khóa đào tạo và huấn luyện lớp 9 mang lại con, được tặng miễn tầm giá khóa ôn thi học tập kì. Bố mẹ hãy đăng ký học test cho nhỏ và được hỗ trợ tư vấn miễn phí. Đăng ký ngay!