Tìm m để phương trình bậc hai có hai nghiệm phân biệt thỏa mãn điều kiện

I. Kiến thức cần nhớ về hệ thức Vi-ét và các ứng dụng

Tìm điều kiện của m để phương trình bậc hai có hai nghiệm phân biệt thỏa mãn điều kiện cho trước là một dạng toán thường gặp trong đề thi tuyển sinh vào lớp 10 môn Toán được magmareport.net biên soạn và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán lớp 9 hiệu quả hơn. Mời các bạn tham khảo.

Bạn đang xem: Pt có 2 nghiệm pb


Để tải trọn bộ tài liệu, mời nhấn vào đường link sau: Bài toán ứng dụng hệ thức Vi-ét tìm điều kiện của tham số m

Tham khảo thêm chuyên đề Vi-ét thi vào 10:

I. Kiến thức cần nhớ về hệ thức Vi-ét và các ứng dụng

1. Định lý Vi-ét thuận

Cho phương trình bậc 2 một ẩn:

*
* có hai nghiệm
*
. Khi đó hai nghiệm thỏa mãn hệ thức:

*

Hệ quả: Dựa vào hệ thức Vi-ét khi phương trình bậc 2 một ẩn có nghiệm, ta có thể nhẩm trực tiếp nghiệm của phương trình trong một số trường hợp đặc biệt sau:

+ Nếu a + b + c = 0 thì phương trình * có 2 nghiệm

*
*


+ Nếu a – b + c = 0 thì phương trình * có 2 nghiệm

*
*

2. Định lý Vi-ét đảo

Giả sử hai số

*
thực thỏa mãn hệ thức:

*

thì

*
là hai nghiệm của phương trình bậc hai
*

3. Cách giải bài toán tìm m để phương trình bậc hai có hai nghiệm thỏa mãn điều kiện cho trước

+ Tìm điều kiện cho tham số để phương trình đã cho có hai nghiệm x1 và x2 (thường là

*
*
)

+ Áp dụng hệ thức Vi-ét để biến đổi biểu thức nghiệm đã cho

+ Đối chiếu với điều kiện xác định của tham số để xác định giá trị cần tìm.

II. Bài tập ví dụ về bài toán tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước

Bài 1: Cho phương trình bậc hai

*
(x là ẩn số, m là tham số)

a) Chứng minh phương trình trên luôn có 2 nghiệm phân biệt x1, x2 với mọi m,

b) Tìm m để hai nghiệm x1, x2 của phương trình có tổng hai nghiệm bằng 6

Lời giải:

a) Ta có:

*

*

Vậy với mọi m thì phương trình luôn có hai nghiệm phân biệt x1, x2


b, Với mọi m thì phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét:

*

Ta có tổng hai nghiệm bằng 6

*

Vậy với m = 4 thì phương trình có hai nghiệm phân biệt thỏa mãn tổng hai nghiệm bằng 6.

Bài 2: Cho phương trình

*
(x là ẩn số, m là tham số)

a, Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m.

b, Tìm m để hai nghiệm phân biệt của phương trình thỏa mãn

*
có giá trị nhỏ nhất.

Lời giải:

a, Ta có

*

Vậy với mọi m phương trình luôn có hai nghiệm phân biệt x1, x2

b, Với mọi m thì phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét:

*

Ta có:

*

Dấu “=” xảy ra khi

*

Vậy với

*
thì phương trình có hai nghiệm phân biệt
*
đạt giá trị nhỏ nhất.

Bài 3: Tìm m để phương trình

*
có hai nghiệm phân biệt thỏa mãn
*
.

Lời giải:

Để phương trình có hai nghiệm phân biệt

*

Ta có

*

Với mọi m phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét:

*

Ta có

*

*

*

*

Vậy với

*
hoặc
*
thì phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn
*
.

Bài 4: Cho phương trình

*
. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn
*

Lời giải:

Để phương trình có hai nghiệm phân biệt

*

Ta có

*

*

*

Vậy với m = 4 thì phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn

*

III. Bài tập tự luyện về bài toán tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước

Bài 1: Tìm m để các phương trình sau có hai nghiệm phân biệt thỏa mãn

*
:

a)

*

b)

*

c)

*

Bài 2: Tìm phương trình

*
(x là ẩn số, m là tham số) có hai nghiệm phân biệt thỏa mãn điều kiện trong các trường hợp sau:


a)

*

b)

*

c)

*

Bài 3: Cho phương trình

*
. Tìm giá trị của m để hai nghiệm phân biệt của phương trình thỏa mãn:

a)

*

b)

*
đạt giá trị nhỏ nhất.

Bài 4: Cho phương trình

*
. Tìm giá trị của m để các nghiệm phân biệt của phương trình thỏa mãn
*
đạt giá trị lớn nhất.

Bài 5: Cho phương trình

*
, với m là tham số:

a) Giải phương trình với m = 1.

Xem thêm: Lý Thuyết Tìm Số Bị Chia Và Số Chia Toán 2, Hướng Dẫn Học Bài Toán Lớp 3 Tìm Số Chia

b) Tìm m để phương trình có hai nghiệm phân biệt

*
thỏa mãn
*

Bài 6: Cho phương trình

*
(với m là tham số)

a) Chứng minh phương trình trên luôn có nghiệm với mọi giá trị của m

b) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn

*

Bài 7: Cho phương trình

*
(với m là tham số)

a) Giải phương trình khi m = – 2

b) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn

*

Bài 8: Tìm m để phương trình

*
có hai nghiệm phân biệt x1, x2 thỏa mãn
*

Chuyên đề luyện thi vào 10

Đề thi thử vào lớp 10 năm 2022 môn Toán

-------

Ngoài chuyên đề trên, mời các bạn học sinh tham khảo thêm các tài liệu học tập lớp lớp 9 mà chúng tôi đã biên soạn và được đăng tải trên magmareport.net. Với chuyên đề này sẽ giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn, chuẩn bị tốt hành trang cho kì thi tuyển sinh vào 10 sắp tới. Chúc các bạn học tập tốt!